>Information Systems homework help

References

Jiang, C., Song, J., Liu, G., Zheng, L., & Luan, W. (2018). Credit card fraud detection: A novel approach using aggregation strategy and feedback mechanism. IEEE Internet of Things Journal5(5), 3637-3647.

Li, Z., Liu, G., & Jiang, C. (2020). Deep representation learning with full center loss for credit card fraud detection. IEEE Transactions on Computational Social Systems7(2), 569-579.

Save your time - order a paper!

Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines

Order Paper Now

Tingfei, H., Guangquan, C., & Kuihua, H. (2020). Using Variational Auto Encoding in Credit Card Fraud Detection. IEEE Access8, 149841-149853.

Zheng, L., Liu, G., Yan, C., & Jiang, C. (2018). Transaction fraud detection based on total order relation and behavior diversity. IEEE Transactions on Computational Social Systems5(3), 796-806.

Zhang, Z., Chen, L., Liu, Q., & Wang, P. (2020). A Fraud Detection Method for Low-Frequency Transaction. IEEE Access8, 25210-25220.

Zanetti, M., Jamhour, E., Pellenz, M., Penna, M., Zambenedetti, V., & Chueiri, I. (2017). A tunable fraud detection system for advanced metering infrastructure using short-lived patterns. IEEE Transactions on Smart grid10(1), 830-840.

Huang, D., Mu, D., Yang, L., & Cai, X. (2018). CoDetect: Financial fraud detection with anomaly feature detection. IEEE Access6, 19161-19174.

Omair, B., & Alturki, A. (2020). A Systematic Literature Review of Fraud Detection Metrics in Business Processes. IEEE Access8, 26893-26903.

Zhu, Bing & Yang, Wenchuan & Wang, Huaxuan & Yuan, Yuan. (2018). A hybrid deep learning model for consumer credit scoring. 205-208. 10.1109/ICAIBD.2018.8396195.

Nie, G., Wei, R., Zhang, L., Tian, Y., and Shi, Y., 2011. Credit card churn forecasting by logistic regression and decision tree. Expert Systems with Applications 38, 12, 15273-15285.

Cecotti, Hubert & Rivera, Agustin & Farhadloo, Majid & Villarreal, Miguel. (2020). Grape detection with Convolutional Neural Networks. Expert Systems with Applications. 159. 113588. 10.1016/j.eswa.2020.113588.

Yifei, R. A. O. (2016). Big Data Algorithm Applied to Credit Risk Assessment Model. International Journal of Simulation–Systems, Science & Technology17(42).

Sarigul, Mehmet & Ozyildirim, B.M. & Avci, Mutlu. (2019). Differential convolutional neural network. Neural Networks. 116. 10.1016/j.neunet.2019.04.025.

Zhou, F.-Y & Jin, Linpeng & Dong, Jianfang. (2017). Review of Convolutional Neural Network. Jisuanji Xuebao/Chinese Journal of Computers. 40. 1229-1251. 10.11897/SP.J.1016.2017.01229.

Dawood, E. A. E., Elfakhrany, E., & Maghraby, F. A. (2019). Improve Profiling Bank Customer’s Behavior Using Machine Learning. IEEE Access7, 109320-109327.

Kvamme, Håvard & Sellereite, Nikolai & Aas, Kjersti & Sjursen, Steffen. (2018). Predicting Mortgage Default using Convolutional Neural Networks. Expert Systems with Applications. 102. 10.1016/j.eswa.2018.02.029.

Zhou, X., Zhang, W., & Jiang, Y. (2020). Personal Credit Default Prediction Model Based on Convolution Neural Network. Mathematical Problems in Engineering2020.

Yu, Z. Y., & Zhao, S. F. (2011, December). Bank credit risk management early warning and decision-making based on BP neural networks. In 2011 IEEE International Symposium on IT in Medicine and Education (Vol. 2, pp. 528-532). IEEE.

Cheng, D., Xiang, S., Shang, C., Zhang, Y., Yang, F., & Zhang, L. (2020, April). Spatio-Temporal Attention-Based Neural Network for Credit Card Fraud Detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 362-369).